1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
/*!
A Rust interface for Objective-C blocks.

For more information on the specifics of the block implementation, see
Clang's documentation: http://clang.llvm.org/docs/Block-ABI-Apple.html

# Invoking blocks

The `Block` struct is used for invoking blocks from Objective-C. For example,
consider this Objective-C function:

``` objc
int32_t sum(int32_t (^block)(int32_t, int32_t)) {
    return block(5, 8);
}
```

We could write it in Rust as the following:

```
# use block::Block;
unsafe fn sum(block: &Block<(i32, i32), i32>) -> i32 {
    block.call((5, 8))
}
```

Note the extra parentheses in the `call` method, since the arguments must be
passed as a tuple.

# Creating blocks

Creating a block to pass to Objective-C can be done with the `ConcreteBlock`
struct. For example, to create a block that adds two `i32`s, we could write:

```
# use block::ConcreteBlock;
let block = ConcreteBlock::new(|a: i32, b: i32| a + b);
let block = block.copy();
assert!(unsafe { block.call((5, 8)) } == 13);
```

It is important to copy your block to the heap (with the `copy` method) before
passing it to Objective-C; this is because our `ConcreteBlock` is only meant
to be copied once, and we can enforce this in Rust, but if Objective-C code
were to copy it twice we could have a double free.
*/

#[cfg(test)]
mod test_utils;

use std::marker::PhantomData;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::os::raw::{c_int, c_ulong, c_void};
use std::ptr;

enum Class { }

#[cfg_attr(any(target_os = "macos", target_os = "ios"),
           link(name = "System", kind = "dylib"))]
#[cfg_attr(not(any(target_os = "macos", target_os = "ios")),
           link(name = "BlocksRuntime", kind = "dylib"))]
extern {
    static _NSConcreteStackBlock: Class;

    fn _Block_copy(block: *const c_void) -> *mut c_void;
    fn _Block_release(block: *const c_void);
}

/// Types that may be used as the arguments to an Objective-C block.
pub trait BlockArguments: Sized {
    /// Calls the given `Block` with self as the arguments.
    ///
    /// Unsafe because `block` must point to a valid `Block` and this invokes
    /// foreign code whose safety the compiler cannot verify.
    unsafe fn call_block<R>(self, block: *mut Block<Self, R>) -> R;
}

macro_rules! block_args_impl {
    ($($a:ident : $t:ident),*) => (
        impl<$($t),*> BlockArguments for ($($t,)*) {
            unsafe fn call_block<R>(self, block: *mut Block<Self, R>) -> R {
                let invoke: unsafe extern fn(*mut Block<Self, R> $(, $t)*) -> R = {
                    let base = block as *mut BlockBase<Self, R>;
                    mem::transmute((*base).invoke)
                };
                let ($($a,)*) = self;
                invoke(block $(, $a)*)
            }
        }
    );
}

block_args_impl!();
block_args_impl!(a: A);
block_args_impl!(a: A, b: B);
block_args_impl!(a: A, b: B, c: C);
block_args_impl!(a: A, b: B, c: C, d: D);
block_args_impl!(a: A, b: B, c: C, d: D, e: E);
block_args_impl!(a: A, b: B, c: C, d: D, e: E, f: F);
block_args_impl!(a: A, b: B, c: C, d: D, e: E, f: F, g: G);
block_args_impl!(a: A, b: B, c: C, d: D, e: E, f: F, g: G, h: H);
block_args_impl!(a: A, b: B, c: C, d: D, e: E, f: F, g: G, h: H, i: I);
block_args_impl!(a: A, b: B, c: C, d: D, e: E, f: F, g: G, h: H, i: I, j: J);
block_args_impl!(a: A, b: B, c: C, d: D, e: E, f: F, g: G, h: H, i: I, j: J, k: K);
block_args_impl!(a: A, b: B, c: C, d: D, e: E, f: F, g: G, h: H, i: I, j: J, k: K, l: L);

#[repr(C)]
struct BlockBase<A, R> {
    isa: *const Class,
    flags: c_int,
    _reserved: c_int,
    invoke: unsafe extern fn(*mut Block<A, R>, ...) -> R,
}

/// An Objective-C block that takes arguments of `A` when called and
/// returns a value of `R`.
#[repr(C)]
pub struct Block<A, R> {
    _base: PhantomData<BlockBase<A, R>>,
}

impl<A: BlockArguments, R> Block<A, R> where A: BlockArguments {
    /// Call self with the given arguments.
    ///
    /// Unsafe because this invokes foreign code that the caller must verify
    /// doesn't violate any of Rust's safety rules. For example, if this block
    /// is shared with multiple references, the caller must ensure that calling
    /// it will not cause a data race.
    pub unsafe fn call(&self, args: A) -> R {
        args.call_block(self as *const _ as *mut _)
    }
}

/// A reference-counted Objective-C block.
pub struct RcBlock<A, R> {
    ptr: *mut Block<A, R>,
}

impl<A, R> RcBlock<A, R> {
    /// Construct an `RcBlock` for the given block without copying it.
    /// The caller must ensure the block has a +1 reference count.
    ///
    /// Unsafe because `ptr` must point to a valid `Block` and must have a +1
    /// reference count or it will be overreleased when the `RcBlock` is
    /// dropped.
    pub unsafe fn new(ptr: *mut Block<A, R>) -> Self {
        RcBlock { ptr: ptr }
    }

    /// Constructs an `RcBlock` by copying the given block.
    ///
    /// Unsafe because `ptr` must point to a valid `Block`.
    pub unsafe fn copy(ptr: *mut Block<A, R>) -> Self {
        let ptr = _Block_copy(ptr as *const c_void) as *mut Block<A, R>;
        RcBlock { ptr: ptr }
    }
}

impl<A, R> Clone for RcBlock<A, R> {
    fn clone(&self) -> RcBlock<A, R> {
        unsafe {
            RcBlock::copy(self.ptr)
        }
    }
}

impl<A, R> Deref for RcBlock<A, R> {
    type Target = Block<A, R>;

    fn deref(&self) -> &Block<A, R> {
        unsafe { &*self.ptr }
    }
}

impl<A, R> Drop for RcBlock<A, R> {
    fn drop(&mut self) {
        unsafe {
            _Block_release(self.ptr as *const c_void);
        }
    }
}

/// Types that may be converted into a `ConcreteBlock`.
pub trait IntoConcreteBlock<A>: Sized where A: BlockArguments {
    /// The return type of the resulting `ConcreteBlock`.
    type Ret;

    /// Consumes self to create a `ConcreteBlock`.
    fn into_concrete_block(self) -> ConcreteBlock<A, Self::Ret, Self>;
}

macro_rules! concrete_block_impl {
    ($f:ident) => (
        concrete_block_impl!($f,);
    );
    ($f:ident, $($a:ident : $t:ident),*) => (
        impl<$($t,)* R, X> IntoConcreteBlock<($($t,)*)> for X
                where X: Fn($($t,)*) -> R {
            type Ret = R;

            fn into_concrete_block(self) -> ConcreteBlock<($($t,)*), R, X> {
                unsafe extern fn $f<$($t,)* R, X>(
                        block_ptr: *mut ConcreteBlock<($($t,)*), R, X>
                        $(, $a: $t)*) -> R
                        where X: Fn($($t,)*) -> R {
                    let block = &*block_ptr;
                    (block.closure)($($a),*)
                }

                let f: unsafe extern fn(*mut ConcreteBlock<($($t,)*), R, X> $(, $a: $t)*) -> R = $f;
                unsafe {
                    ConcreteBlock::with_invoke(mem::transmute(f), self)
                }
            }
        }
    );
}

concrete_block_impl!(concrete_block_invoke_args0);
concrete_block_impl!(concrete_block_invoke_args1, a: A);
concrete_block_impl!(concrete_block_invoke_args2, a: A, b: B);
concrete_block_impl!(concrete_block_invoke_args3, a: A, b: B, c: C);
concrete_block_impl!(concrete_block_invoke_args4, a: A, b: B, c: C, d: D);
concrete_block_impl!(concrete_block_invoke_args5, a: A, b: B, c: C, d: D, e: E);
concrete_block_impl!(concrete_block_invoke_args6, a: A, b: B, c: C, d: D, e: E, f: F);
concrete_block_impl!(concrete_block_invoke_args7, a: A, b: B, c: C, d: D, e: E, f: F, g: G);
concrete_block_impl!(concrete_block_invoke_args8, a: A, b: B, c: C, d: D, e: E, f: F, g: G, h: H);
concrete_block_impl!(concrete_block_invoke_args9, a: A, b: B, c: C, d: D, e: E, f: F, g: G, h: H, i: I);
concrete_block_impl!(concrete_block_invoke_args10, a: A, b: B, c: C, d: D, e: E, f: F, g: G, h: H, i: I, j: J);
concrete_block_impl!(concrete_block_invoke_args11, a: A, b: B, c: C, d: D, e: E, f: F, g: G, h: H, i: I, j: J, k: K);
concrete_block_impl!(concrete_block_invoke_args12, a: A, b: B, c: C, d: D, e: E, f: F, g: G, h: H, i: I, j: J, k: K, l: L);

/// An Objective-C block whose size is known at compile time and may be
/// constructed on the stack.
#[repr(C)]
pub struct ConcreteBlock<A, R, F> {
    base: BlockBase<A, R>,
    descriptor: Box<BlockDescriptor<ConcreteBlock<A, R, F>>>,
    closure: F,
}

impl<A, R, F> ConcreteBlock<A, R, F>
        where A: BlockArguments, F: IntoConcreteBlock<A, Ret=R> {
    /// Constructs a `ConcreteBlock` with the given closure.
    /// When the block is called, it will return the value that results from
    /// calling the closure.
    pub fn new(closure: F) -> Self {
        closure.into_concrete_block()
    }
}

impl<A, R, F> ConcreteBlock<A, R, F> {
    /// Constructs a `ConcreteBlock` with the given invoke function and closure.
    /// Unsafe because the caller must ensure the invoke function takes the
    /// correct arguments.
    unsafe fn with_invoke(invoke: unsafe extern fn(*mut Self, ...) -> R,
            closure: F) -> Self {
        ConcreteBlock {
            base: BlockBase {
                isa: &_NSConcreteStackBlock,
                // 1 << 25 = BLOCK_HAS_COPY_DISPOSE
                flags: 1 << 25,
                _reserved: 0,
                invoke: mem::transmute(invoke),
            },
            descriptor: Box::new(BlockDescriptor::new()),
            closure: closure,
        }
    }
}

impl<A, R, F> ConcreteBlock<A, R, F> where F: 'static {
    /// Copy self onto the heap as an `RcBlock`.
    pub fn copy(self) -> RcBlock<A, R> {
        unsafe {
            let mut block = self;
            let copied = RcBlock::copy(&mut *block);
            // At this point, our copy helper has been run so the block will
            // be moved to the heap and we can forget the original block
            // because the heap block will drop in our dispose helper.
            mem::forget(block);
            copied
        }
    }
}

impl<A, R, F> Clone for ConcreteBlock<A, R, F> where F: Clone {
    fn clone(&self) -> Self {
        unsafe {
            ConcreteBlock::with_invoke(mem::transmute(self.base.invoke),
                self.closure.clone())
        }
    }
}

impl<A, R, F> Deref for ConcreteBlock<A, R, F> {
    type Target = Block<A, R>;

    fn deref(&self) -> &Block<A, R> {
        unsafe { &*(&self.base as *const _ as *const Block<A, R>) }
    }
}

impl<A, R, F> DerefMut for ConcreteBlock<A, R, F> {
    fn deref_mut(&mut self) -> &mut Block<A, R> {
        unsafe { &mut *(&mut self.base as *mut _ as *mut Block<A, R>) }
    }
}

unsafe extern fn block_context_dispose<B>(block: &mut B) {
    // Read the block onto the stack and let it drop
    ptr::read(block);
}

unsafe extern fn block_context_copy<B>(_dst: &mut B, _src: &B) {
    // The runtime memmoves the src block into the dst block, nothing to do
}

#[repr(C)]
struct BlockDescriptor<B> {
    _reserved: c_ulong,
    block_size: c_ulong,
    copy_helper: unsafe extern fn(&mut B, &B),
    dispose_helper: unsafe extern fn(&mut B),
}

impl<B> BlockDescriptor<B> {
    fn new() -> BlockDescriptor<B> {
        BlockDescriptor {
            _reserved: 0,
            block_size: mem::size_of::<B>() as c_ulong,
            copy_helper: block_context_copy::<B>,
            dispose_helper: block_context_dispose::<B>,
        }
    }
}

#[cfg(test)]
mod tests {
    use test_utils::*;
    use super::{ConcreteBlock, RcBlock};

    #[test]
    fn test_call_block() {
        let block = get_int_block_with(13);
        unsafe {
            assert!(block.call(()) == 13);
        }
    }

    #[test]
    fn test_call_block_args() {
        let block = get_add_block_with(13);
        unsafe {
            assert!(block.call((2,)) == 15);
        }
    }

    #[test]
    fn test_create_block() {
        let block = ConcreteBlock::new(|| 13);
        let result = invoke_int_block(&block);
        assert!(result == 13);
    }

    #[test]
    fn test_create_block_args() {
        let block = ConcreteBlock::new(|a: i32| a + 5);
        let result = invoke_add_block(&block, 6);
        assert!(result == 11);
    }

    #[test]
    fn test_concrete_block_copy() {
        let s = "Hello!".to_string();
        let expected_len = s.len() as i32;
        let block = ConcreteBlock::new(move || s.len() as i32);
        assert!(invoke_int_block(&block) == expected_len);

        let copied = block.copy();
        assert!(invoke_int_block(&copied) == expected_len);
    }

    #[test]
    fn test_concrete_block_stack_copy() {
        fn make_block() -> RcBlock<(), i32> {
            let x = 7;
            let block = ConcreteBlock::new(move || x);
            block.copy()
        }

        let block = make_block();
        assert!(invoke_int_block(&block) == 7);
    }
}