1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
/*!
Rust wrapper for Apple's Grand Central Dispatch (GCD).

GCD is an implementation of task parallelism that allows tasks to be submitted
to queues where they are scheduled to execute.

For more information, see Apple's [Grand Central Dispatch reference](
https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html).

# Serial Queues

Serial queues execute tasks serially in FIFO order. The application's main
queue is serial and can be accessed through the `Queue::main` function.

```
use dispatch::{Queue, QueueAttribute};

let queue = Queue::create("com.example.rust", QueueAttribute::Serial);
queue.async(|| println!("Hello"));
queue.async(|| println!("World"));
```

# Concurrent Queues

Concurrent dispatch queues execute tasks concurrently. GCD provides global
concurrent queues that can be accessed through the `Queue::global` function.

`Queue` has two methods that can simplify processing data in parallel, `foreach`
and `map`:

```
use dispatch::{Queue, QueuePriority};

let queue = Queue::global(QueuePriority::Default);

let mut nums = vec![1, 2];
queue.foreach(&mut nums, |x| *x += 1);
assert!(nums == [2, 3]);

let nums = queue.map(nums, |x| x.to_string());
assert!(nums[0] == "2");
```
*/

#![warn(missing_docs)]

use std::cell::UnsafeCell;
use std::ffi::{CStr, CString};
use std::mem;
use std::os::raw::{c_long, c_void};
use std::ptr;
use std::str;
use std::time::Duration;

use ffi::*;

/// Raw foreign function interface for libdispatch.
pub mod ffi;

/// The type of a dispatch queue.
#[derive(Clone, Debug, Hash, PartialEq)]
pub enum QueueAttribute {
    /// The queue executes blocks serially in FIFO order.
    Serial,
    /// The queue executes blocks concurrently.
    Concurrent,
}

impl QueueAttribute {
    #[cfg(not(all(test, target_os = "linux")))]
    fn as_raw(&self) -> dispatch_queue_attr_t {
        match *self {
            QueueAttribute::Serial => DISPATCH_QUEUE_SERIAL,
            QueueAttribute::Concurrent => DISPATCH_QUEUE_CONCURRENT,
        }
    }

    #[cfg(all(test, target_os = "linux"))]
    fn as_raw(&self) -> dispatch_queue_attr_t {
        // The Linux tests use Ubuntu's libdispatch-dev package, which is
        // apparently really old from before OSX 10.7.
        // Back then, the attr for dispatch_queue_create must be NULL.
        ptr::null()
    }
}

/// The priority of a global concurrent queue.
#[derive(Clone, Debug, Hash, PartialEq)]
pub enum QueuePriority {
    /// The queue is scheduled for execution before any default priority or low
    /// priority queue.
    High,
    /// The queue is scheduled for execution after all high priority queues,
    /// but before any low priority queues.
    Default,
    /// The queue is scheduled for execution after all default priority and
    /// high priority queues.
    Low,
    /// The queue is scheduled for execution after all high priority queues
    /// have been scheduled. The system runs items on a thread whose
    /// priority is set for background status and any disk I/O is throttled to
    /// minimize the impact on the system.
    Background,
}

impl QueuePriority {
    fn as_raw(&self) -> c_long {
        match *self {
            QueuePriority::High       => DISPATCH_QUEUE_PRIORITY_HIGH,
            QueuePriority::Default    => DISPATCH_QUEUE_PRIORITY_DEFAULT,
            QueuePriority::Low        => DISPATCH_QUEUE_PRIORITY_LOW,
            QueuePriority::Background => DISPATCH_QUEUE_PRIORITY_BACKGROUND,
        }
    }
}

/// A Grand Central Dispatch queue.
///
/// For more information, see Apple's [Grand Central Dispatch reference](
/// https://developer.apple.com/library/mac/documentation/Performance/Reference/GCD_libdispatch_Ref/index.html).
pub struct Queue {
    ptr: dispatch_queue_t,
}

fn time_after_delay(delay: Duration) -> dispatch_time_t {
    delay.as_secs().checked_mul(1_000_000_000).and_then(|i| {
        i.checked_add(delay.subsec_nanos() as u64)
    }).and_then(|i| {
        if i < (i64::max_value() as u64) { Some(i as i64) } else { None }
    }).map_or(DISPATCH_TIME_FOREVER, |i| unsafe {
        dispatch_time(DISPATCH_TIME_NOW, i)
    })
}

fn context_and_function<F>(closure: F) -> (*mut c_void, dispatch_function_t)
        where F: FnOnce() {
    extern fn work_execute_closure<F>(context: Box<F>) where F: FnOnce() {
        (*context)();
    }

    let closure = Box::new(closure);
    let func: extern fn(Box<F>) = work_execute_closure::<F>;
    unsafe {
        (mem::transmute(closure), mem::transmute(func))
    }
}

fn context_and_sync_function<F>(closure: &mut Option<F>) ->
        (*mut c_void, dispatch_function_t)
        where F: FnOnce() {
    extern fn work_read_closure<F>(context: &mut Option<F>) where F: FnOnce() {
        // This is always passed Some, so it's safe to unwrap
        let closure = context.take().unwrap();
        closure();
    }

    let context: *mut Option<F> = closure;
    let func: extern fn(&mut Option<F>) = work_read_closure::<F>;
    unsafe {
        (context as *mut c_void, mem::transmute(func))
    }
}

fn context_and_apply_function<F>(closure: &F) ->
        (*mut c_void, extern fn(*mut c_void, usize))
        where F: Fn(usize) {
    extern fn work_apply_closure<F>(context: &F, iter: usize)
            where F: Fn(usize) {
        context(iter);
    }

    let context: *const F = closure;
    let func: extern fn(&F, usize) = work_apply_closure::<F>;
    unsafe {
        (context as *mut c_void, mem::transmute(func))
    }
}

impl Queue {
    /// Returns the serial dispatch `Queue` associated with the application's
    /// main thread.
    pub fn main() -> Self {
        let queue = dispatch_get_main_queue();
        unsafe {
            dispatch_retain(queue);
        }
        Queue { ptr: queue }
    }

    /// Returns a system-defined global concurrent `Queue` with the specified
    /// priority.
    pub fn global(priority: QueuePriority) -> Self {
        unsafe {
            let queue = dispatch_get_global_queue(priority.as_raw(), 0);
            dispatch_retain(queue);
            Queue { ptr: queue }
        }
    }

    /// Creates a new dispatch `Queue`.
    pub fn create(label: &str, attr: QueueAttribute) -> Self {
        let label = CString::new(label).unwrap();
        let queue = unsafe {
            dispatch_queue_create(label.as_ptr(), attr.as_raw())
        };
        Queue { ptr: queue }
    }

    /// Creates a new dispatch `Queue` with the given target queue.
    ///
    /// A dispatch queue's priority is inherited from its target queue.
    /// Additionally, if both the queue and its target are serial queues,
    /// their blocks will not be invoked concurrently.
    pub fn with_target_queue(label: &str, attr: QueueAttribute, target: &Queue)
            -> Self {
        let queue = Queue::create(label, attr);
        unsafe {
            dispatch_set_target_queue(queue.ptr, target.ptr);
        }
        queue
    }

    /// Returns the label that was specified for self.
    pub fn label(&self) -> &str {
        let label = unsafe {
            let label_ptr = dispatch_queue_get_label(self.ptr);
            if label_ptr.is_null() {
                return "";
            }
            CStr::from_ptr(label_ptr)
        };
        str::from_utf8(label.to_bytes()).unwrap()
    }

    /// Submits a closure for execution on self and waits until it completes.
    pub fn sync<T, F>(&self, work: F) -> T
            where F: Send + FnOnce() -> T, T: Send {
        let mut result = None;
        {
            let result_ref = &mut result;
            let work = move || {
                *result_ref = Some(work());
            };

            let mut work = Some(work);
            let (context, work) = context_and_sync_function(&mut work);
            unsafe {
                dispatch_sync_f(self.ptr, context, work);
            }
        }
        // This was set so it's safe to unwrap
        result.unwrap()
    }

    /// Submits a closure for asynchronous execution on self and returns
    /// immediately.
    pub fn async<F>(&self, work: F) where F: 'static + Send + FnOnce() {
        let (context, work) = context_and_function(work);
        unsafe {
            dispatch_async_f(self.ptr, context, work);
        }
    }

    /// After the specified delay, submits a closure for asynchronous execution
    /// on self.
    pub fn after_ms<F>(&self, ms: u32, work: F)
            where F: 'static + Send + FnOnce() {
        self.after(Duration::from_millis(ms as u64), work);
    }

    /// After the specified delay, submits a closure for asynchronous execution
    /// on self.
    pub fn after<F>(&self, delay: Duration, work: F)
            where F: 'static + Send + FnOnce() {
        let when = time_after_delay(delay);
        let (context, work) = context_and_function(work);
        unsafe {
            dispatch_after_f(when, self.ptr, context, work);
        }
    }

    /// Submits a closure to be executed on self the given number of iterations
    /// and waits until it completes.
    pub fn apply<F>(&self, iterations: usize, work: F)
            where F: Sync + Fn(usize) {
        let (context, work) = context_and_apply_function(&work);
        unsafe {
            dispatch_apply_f(iterations, self.ptr, context, work);
        }
    }

    /// Submits a closure to be executed on self for each element of the
    /// provided slice and waits until it completes.
    pub fn foreach<T, F>(&self, slice: &mut [T], work: F)
            where F: Sync + Fn(&mut T), T: Send {
        let slice_ptr = slice.as_mut_ptr();
        let work = move |i| unsafe {
            work(&mut *slice_ptr.offset(i as isize));
        };
        let (context, work) = context_and_apply_function(&work);
        unsafe {
            dispatch_apply_f(slice.len(), self.ptr, context, work);
        }
    }

    /// Submits a closure to be executed on self for each element of the
    /// provided vector and returns a `Vec` of the mapped elements.
    pub fn map<T, U, F>(&self, vec: Vec<T>, work: F) -> Vec<U>
            where F: Sync + Fn(T) -> U, T: Send, U: Send {
        let mut src = vec;
        let len = src.len();
        let src_ptr = src.as_ptr();

        let mut dest: Vec<U> = Vec::with_capacity(len);
        let dest_ptr = dest.as_mut_ptr();

        let work = move |i| unsafe {
            let result = work(ptr::read(src_ptr.offset(i as isize)));
            ptr::write(dest_ptr.offset(i as isize), result);
        };
        let (context, work) = context_and_apply_function(&work);
        unsafe {
            src.set_len(0);
            dispatch_apply_f(len, self.ptr, context, work);
            dest.set_len(len);
        }

        dest
    }

    /// Submits a closure to be executed on self as a barrier and waits until
    /// it completes.
    ///
    /// Barriers create synchronization points within a concurrent queue.
    /// If self is concurrent, when it encounters a barrier it delays execution
    /// of the closure (and any further ones) until all closures submitted
    /// before the barrier finish executing.
    /// At that point, the barrier closure executes by itself.
    /// Upon completion, self resumes its normal execution behavior.
    ///
    /// If self is a serial queue or one of the global concurrent queues,
    /// this method behaves like the normal `sync` method.
    pub fn barrier_sync<T, F>(&self, work: F) -> T
            where F: Send + FnOnce() -> T, T: Send {
        let mut result = None;
        {
            let result_ref = &mut result;
            let work = move || {
                *result_ref = Some(work());
            };

            let mut work = Some(work);
            let (context, work) = context_and_sync_function(&mut work);
            unsafe {
                dispatch_barrier_sync_f(self.ptr, context, work);
            }
        }
        // This was set so it's safe to unwrap
        result.unwrap()
    }

    /// Submits a closure to be executed on self as a barrier and returns
    /// immediately.
    ///
    /// Barriers create synchronization points within a concurrent queue.
    /// If self is concurrent, when it encounters a barrier it delays execution
    /// of the closure (and any further ones) until all closures submitted
    /// before the barrier finish executing.
    /// At that point, the barrier closure executes by itself.
    /// Upon completion, self resumes its normal execution behavior.
    ///
    /// If self is a serial queue or one of the global concurrent queues,
    /// this method behaves like the normal `async` method.
    pub fn barrier_async<F>(&self, work: F)
            where F: 'static + Send + FnOnce() {
        let (context, work) = context_and_function(work);
        unsafe {
            dispatch_barrier_async_f(self.ptr, context, work);
        }
    }

    /// Suspends the invocation of blocks on self and returns a `SuspendGuard`
    /// that can be dropped to resume.
    ///
    /// The suspension occurs after completion of any blocks running at the
    /// time of the call.
    /// Invocation does not resume until all `SuspendGuard`s have been dropped.
    pub fn suspend(&self) -> SuspendGuard {
        SuspendGuard::new(self)
    }
}

unsafe impl Sync for Queue { }
unsafe impl Send for Queue { }

impl Clone for Queue {
    fn clone(&self) -> Self {
        unsafe {
            dispatch_retain(self.ptr);
        }
        Queue { ptr: self.ptr }
    }
}

impl Drop for Queue {
    fn drop(&mut self) {
        unsafe {
            dispatch_release(self.ptr);
        }
    }
}

/// An RAII guard which will resume a suspended `Queue` when dropped.
pub struct SuspendGuard {
    queue: Queue,
}

impl SuspendGuard {
    fn new(queue: &Queue) -> SuspendGuard {
        unsafe {
            dispatch_suspend(queue.ptr);
        }
        SuspendGuard { queue: queue.clone() }
    }

    /// Drops self, allowing the suspended `Queue` to resume.
    pub fn resume(self) { }
}

impl Clone for SuspendGuard {
    fn clone(&self) -> Self {
        SuspendGuard::new(&self.queue)
    }
}

impl Drop for SuspendGuard {
    fn drop(&mut self) {
        unsafe {
            dispatch_resume(self.queue.ptr);
        }
    }
}

/// A Grand Central Dispatch group.
///
/// A `Group` is a mechanism for grouping closures and monitoring them. This
/// allows for aggregate synchronization, so you can track when all the
/// closures complete, even if they are running on different queues.
pub struct Group {
    ptr: dispatch_group_t,
}

impl Group {
    /// Creates a new dispatch `Group`.
    pub fn create() -> Group {
        unsafe {
            Group { ptr: dispatch_group_create() }
        }
    }

    /// Indicates that a closure has entered self, and increments the current
    /// count of outstanding tasks. Returns a `GroupGuard` that should be
    /// dropped when the closure leaves self, decrementing the count.
    pub fn enter(&self) -> GroupGuard {
        GroupGuard::new(self)
    }

    /// Submits a closure asynchronously to the given `Queue` and associates it
    /// with self.
    pub fn async<F>(&self, queue: &Queue, work: F)
            where F: 'static + Send + FnOnce() {
        let (context, work) = context_and_function(work);
        unsafe {
            dispatch_group_async_f(self.ptr, queue.ptr, context, work);
        }
    }

    /// Schedules a closure to be submitted to the given `Queue` when all tasks
    /// associated with self have completed.
    /// If self is empty, the closure is submitted immediately.
    pub fn notify<F>(&self, queue: &Queue, work: F)
            where F: 'static + Send + FnOnce() {
        let (context, work) = context_and_function(work);
        unsafe {
            dispatch_group_notify_f(self.ptr, queue.ptr, context, work);
        }
    }

    /// Waits synchronously for all tasks associated with self to complete.
    pub fn wait(&self) {
        let result = unsafe {
            dispatch_group_wait(self.ptr, DISPATCH_TIME_FOREVER)
        };
        assert!(result == 0, "Dispatch group wait errored");
    }

    /// Waits for all tasks associated with self to complete within the
    /// specified duration.
    /// Returns true if the tasks completed or false if the timeout elapsed.
    pub fn wait_timeout_ms(&self, ms: u32) -> bool {
        self.wait_timeout(Duration::from_millis(ms as u64))
    }

    /// Waits for all tasks associated with self to complete within the
    /// specified duration.
    /// Returns true if the tasks completed or false if the timeout elapsed.
    pub fn wait_timeout(&self, timeout: Duration) -> bool {
        let when = time_after_delay(timeout);
        let result = unsafe {
            dispatch_group_wait(self.ptr, when)
        };
        result == 0
    }

    /// Returns whether self is currently empty.
    pub fn is_empty(&self) -> bool {
        let result = unsafe {
            dispatch_group_wait(self.ptr, DISPATCH_TIME_NOW)
        };
        result == 0
    }
}

unsafe impl Sync for Group { }
unsafe impl Send for Group { }

impl Clone for Group {
    fn clone(&self) -> Self {
        unsafe {
            dispatch_retain(self.ptr);
        }
        Group { ptr: self.ptr }
    }
}

impl Drop for Group {
    fn drop(&mut self) {
        unsafe {
            dispatch_release(self.ptr);
        }
    }
}

/// An RAII guard which will leave a `Group` when dropped.
pub struct GroupGuard {
    group: Group,
}

impl GroupGuard {
    fn new(group: &Group) -> GroupGuard {
        unsafe {
            dispatch_group_enter(group.ptr);
        }
        GroupGuard { group: group.clone() }
    }

    /// Drops self, leaving the `Group`.
    pub fn leave(self) { }
}

impl Clone for GroupGuard {
    fn clone(&self) -> Self {
        GroupGuard::new(&self.group)
    }
}

impl Drop for GroupGuard {
    fn drop(&mut self) {
        unsafe {
            dispatch_group_leave(self.group.ptr);
        }
    }
}

#[allow(dead_code)]
struct Once {
    predicate: UnsafeCell<dispatch_once_t>,
}

#[allow(dead_code)]
impl Once {
    // TODO: make this a const fn when the feature is stable
    pub fn new() -> Once {
        Once { predicate: UnsafeCell::new(0) }
    }

    #[inline(always)]
    pub fn call_once<F>(&'static self, work: F) where F: FnOnce() {
        #[cold]
        #[inline(never)]
        fn once<F>(predicate: *mut dispatch_once_t, work: F)
                where F: FnOnce() {
            let mut work = Some(work);
            let (context, work) = context_and_sync_function(&mut work);
            unsafe {
                dispatch_once_f(predicate, context, work);
            }
        }

        unsafe {
            let predicate = self.predicate.get();
            if *predicate != !0 {
                once(predicate, work);
            }
        }
    }
}

unsafe impl Sync for Once { }

#[cfg(test)]
mod tests {
    use std::sync::{Arc, Mutex};
    use std::time::{Duration, Instant};
    use super::*;

    fn async_increment(queue: &Queue, num: &Arc<Mutex<i32>>) {
        let num = num.clone();
        queue.async(move || {
            let mut num = num.lock().unwrap();
            *num += 1;
        });
    }

    #[test]
    fn test_serial_queue() {
        let q = Queue::create("", QueueAttribute::Serial);
        let mut num = 0;

        q.sync(|| num = 1);
        assert_eq!(num, 1);

        assert_eq!(q.sync(|| num), 1);
    }

    #[test]
    fn test_sync_owned() {
        let q = Queue::create("", QueueAttribute::Serial);

        let s = "Hello, world!".to_string();
        let len = q.sync(move || s.len());
        assert_eq!(len, 13);
    }

    #[test]
    fn test_serial_queue_async() {
        let q = Queue::create("", QueueAttribute::Serial);
        let num = Arc::new(Mutex::new(0));

        async_increment(&q, &num);

        // Sync an empty block to ensure the async one finishes
        q.sync(|| ());
        assert_eq!(*num.lock().unwrap(), 1);
    }

    #[test]
    fn test_after() {
        let q = Queue::create("", QueueAttribute::Serial);
        let group = Group::create();
        let num = Arc::new(Mutex::new(0));

        let delay = Duration::from_millis(5);
        let num2 = num.clone();
        let guard = group.enter();
        let start = Instant::now();
        q.after(delay, move || {
            let mut num = num2.lock().unwrap();
            *num = 1;
            guard.leave();
        });

        // Wait for the previous block to complete
        assert!(group.wait_timeout(Duration::from_millis(5000)));
        assert!(start.elapsed() >= delay);
        assert_eq!(*num.lock().unwrap(), 1);
    }

    #[test]
    fn test_queue_label() {
        let q = Queue::create("com.example.rust", QueueAttribute::Serial);
        assert_eq!(q.label(), "com.example.rust");
    }

    #[test]
    fn test_apply() {
        let q = Queue::create("", QueueAttribute::Serial);
        let num = Arc::new(Mutex::new(0));

        q.apply(5, |_| *num.lock().unwrap() += 1);
        assert_eq!(*num.lock().unwrap(), 5);
    }

    #[test]
    fn test_foreach() {
        let q = Queue::create("", QueueAttribute::Serial);
        let mut nums = [0, 1];

        q.foreach(&mut nums, |x| *x += 1);
        assert_eq!(nums, [1, 2]);
    }

    #[test]
    fn test_map() {
        let q = Queue::create("", QueueAttribute::Serial);
        let nums = vec![0, 1];

        let result = q.map(nums, |x| x + 1);
        assert_eq!(result, [1, 2]);
    }

    #[test]
    fn test_barrier_sync() {
        let q = Queue::create("", QueueAttribute::Concurrent);
        let num = Arc::new(Mutex::new(0));

        async_increment(&q, &num);
        async_increment(&q, &num);

        let num2 = num.clone();
        let result = q.barrier_sync(move || {
            let mut num = num2.lock().unwrap();
            if *num == 2 {
                *num = 10;
            }
            *num
        });
        assert_eq!(result, 10);

        async_increment(&q, &num);
        async_increment(&q, &num);

        q.barrier_sync(|| ());
        assert_eq!(*num.lock().unwrap(), 12);
    }

    #[test]
    fn test_barrier_async() {
        let q = Queue::create("", QueueAttribute::Concurrent);
        let num = Arc::new(Mutex::new(0));

        async_increment(&q, &num);
        async_increment(&q, &num);

        let num2 = num.clone();
        q.barrier_async(move || {
            let mut num = num2.lock().unwrap();
            if *num == 2 {
                *num = 10;
            }
        });

        async_increment(&q, &num);
        async_increment(&q, &num);

        q.barrier_sync(|| ());
        assert_eq!(*num.lock().unwrap(), 12);
    }

    #[test]
    fn test_suspend() {
        let q = Queue::create("", QueueAttribute::Serial);
        let num = Arc::new(Mutex::new(0));

        // Suspend the queue and then dispatch some work to it
        let guard = q.suspend();
        async_increment(&q, &num);

        // Sleep and ensure the work doesn't occur
        ::std::thread::sleep(Duration::from_millis(5));
        assert_eq!(*num.lock().unwrap(), 0);

        // But ensure the work does complete after we resume
        guard.resume();
        q.sync(|| ());
        assert_eq!(*num.lock().unwrap(), 1);
    }

    #[test]
    fn test_group() {
        let group = Group::create();
        let q = Queue::create("", QueueAttribute::Serial);
        let num = Arc::new(Mutex::new(0));

        let num2 = num.clone();
        group.async(&q, move || {
            let mut num = num2.lock().unwrap();
            *num += 1;
        });

        let guard = group.enter();
        assert!(!group.is_empty());
        let num3 = num.clone();
        q.async(move || {
            let mut num = num3.lock().unwrap();
            *num += 1;
            guard.leave();
        });

        let notify_group = Group::create();
        let guard = notify_group.enter();
        let num4 = num.clone();
        group.notify(&q, move || {
            let mut num = num4.lock().unwrap();
            *num *= 5;
            guard.leave();
        });

        // Wait for the notify block to finish
        notify_group.wait();
        // If the notify ran, the group should be empty
        assert!(group.is_empty());
        // The notify must have run after the two blocks of the group
        assert_eq!(*num.lock().unwrap(), 10);
    }
}